Molecular Spectroscopy and Ultracold Quantum Gases Laboratory (QGL)

Molecular Spectroscopy and Ultracold Quantum Gases Laboratory (QGL)

Research topics

We use laser technique of polarization labelling spectroscopy to study excited states of diatomic molecules, particularly these states which are important in experiments on ultra-cold matter. For this reason we focus our research on homo- and heteronuclear alkali dimers and alkali atom - alkaline earth atom molecules. Basing on experimental observations the potential energy curves of investigated states are constructed using the pointwise Inverted Perturbation Approach method developed in our group.

We also focus on several intertwined topics of modern AMO physics, in particular on the development of new laser cooling methods and formation of ultracold ground state molecules of cesium and potassium. In a project “Cold atom-based quantum simulators” financed by the Foundation for Polish Science’s Homing grant we investigate the possibility of direct laser cooling of cesium to quantum degeneracy. This would speed up the time required to obtain quantum degenerate gas (laser cooling is orders of magnitude more efficient than evaporative cooling).

Research group website

Molecular spectroscopy

The main objective of spectroscopy of diatomic alkali metal molecules has always been to compare the structure of their electron states with theoretical predictions. Interest in this structure has been greatly revived by recent advances in the fabrication of cold alkali metal molecules, as detailed knowledge of the electron states of the molecules is particularly important for the realisation of this process.

Polarisation labelling spectroscopy (PLS) is an efficient method for simplifying complex molecular spectra, combining the principles of polarisation spectroscopy and double optical resonance. The basic idea of the method is to monitor polarisation changes of a weak sample laser beam, which are induced by the optical anisotropy of the sample produced by a strong pumping laser beam. In contrast to the classical PLS scheme, in our experiments we use a sampling laser with a fixed frequency, while the pump laser light is tuned in the spectral interval under study.

The frequencies of the observed spectral lines are converted into energies of oscillation-rotation levels. The excited state is then represented by a potential energy curve determined numerically using our unique implementation of the Inverse Perturbation Approach (IPA) method. This method allows the construction of potentials even with exotic shapes for which traditional description methods fail. To date, we have studied more than 90 excited states in the alkali dimers Li2, Na2, K2, Rb2, Cs2, LiCs, NaCs, NaRb, NaK and KLi using the PLS technique.

Laser cooling of caesium and potassium for quantum degeneration

We use Raman cooling in an optical network to increase the density of atoms in the phase space using only optical methods. In this approach, cooling is a more on an order of magnitude faster process than in evaporative cooling approaches. Developed experimental methods will allow efficient production of ultra-cold particles trapped in optical networks and, thus, they will contribute to the onset of a new generation of analog quantum simulators for the simulation of properties of the strongly interacting matter.

Boson-fermion mixture of potassium isotopes

The ultra-cold mixture of potassium-39 and potassium-40, which we have received, allows us to attempt to observe the p-wave superfluidity in quantum gases, thus it gives us a tool to study properties of exotic superconductors. We expect that this achievement will contribute to a better understanding of existing theoretical models describing this phenomenon and will guide the development of these models, allowing us to develop realistic systems of technological significance.

Atomic Interferometry

As a part of the NLPQT project, we are working on a construction of a mobile station for atomic interferometry. The use of matter waves of ultra-cold atoms will allow us to construct a gradiometer enabling absolute measurement of gravitational field intensity. Thus, the device will be a sensor, which will not require any calibration and allow the detection of objects below the surface of the earth, such as minerals, abandoned shafts or military objects. With absolute measurements, the device will enable inertial navigation using gravitational field maps without the need for the use of the GPS.

2023

J. Phys. Chem. A 127

Excited Electronic States of Sr2: Ab Initio Predictions and Experimental Observation of the21Σu+State

  • Szczepkowski/ J.
  • Gronowski / M.
  • Grochola/ A
  • Jastrzebski/ W.
  • Tomza/M.
  • P. Kowalczyk

2021

Spectrochimica Acta A255, 119643

On the 31Πu state in caesium dimer

2020

Journal of Molecular Structure 1208, 127858

Polarisation labelling spectroscopy of rubidium dimer: highly excited 81Σ+u, 91Σ+u and 81Πu states

2020

Journal of Quantitative Spectroscopy and Radiative Transfer 248, 106984

Observation of D(2)1Π ∼ (2)3Π ∼ (2)3Σ+ states in KCs by polarisation labelling spectroscopy technique. Modelling of the D(2)1Π ∼ (2)3Π1 system

2019

Phys. Rev. A100, 012507

Double-minimum 31Sigma+u state in Rb2: Spectroscopic study and possible applications for cold-physics experiments

2019

J. Quant. Spectrosc. Rad. Transfer 239, 106650

The spin-orbit coupling of the 61Pi and 43Pi states in KCs: Observation and deperturbation

  • J. Szczepkowski
  • A. Grochola
  • P. Kowalczyk
  • W. Jastrzebski
  • E.A. Pazyuk
  • A.V. Stolyarov
  • A. Pashov

2018

J. Mol. Spectrosc. 347, 48 – 55

Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

2018

Journal of Quantitative Spectroscopy and Radiative Transfer 204, 131-137

Spectroscopic study of the C(3)1Σ+ ← X1Σ+ and c(2)3Σ+ ← X1Σ+ transitions in KCs molecule

2018

J. Quant. Spectrosc. Rad. Transfer 221, 225-232

Coupled-channels analysis of the (51Σ+u, 51Πu, 53Πu, 23Δu) complex of electronic states in rubidium dimer

  • A. Pashov
  • P. Kowalczyk
  • A. Grochola
  • J. Szczepkowski
  • W. Jastrzebski

2018

Physical Chemistry Chemical Physics, 20, 26221-26240

The RbSr 2Σ+ ground state investigated via spectroscopy of hot & ultracold molecules

  • A. Ciamei
  • J. Szczepkowski
  • A. Bayerle
  • V. Barbé
  • L. Reichsöllner
  • S. M. Tzanova
  • Chun-Chia Chen
  • B. Pasquiou
  • A. Grochola
  • P. Kowalczyk
  • W. Jastrzebski
  • F. Schreck

2018

J. Mol. Spectrosc. 354, 60-64

Spectroscopic study of the 71Pu and 71S+u states of Rb2 molecule

  • W. Jastrzebski
  • A. Grochola
  • K. Olkowska
  • J. Szczepkowski
  • P. Kowalczyk

2018

J. Quant. Spectrosc. Rad. Transfer 210, 217 – 224

Experimental and theoretical study of the B(2)2Σ+→X(1) 2Σ+ system in the KSr molecule

  • J. Szczepkowski
  • A. Grochola
  • P. Kowalczyk
  • O. Dulieu
  • R. Guérout
  • P. S. Żuchowski
  • W. Jastrzebski

2017

J. of Quantitative Spectroscopy and Radiation Transfer 202, 328-334

The coupled system of (5) 1 Σ u + and (5) 1 Π u electronic states in Rb

  • I. Havalyova
  • A. Pashov
  • P. Kowalczyk
  • J. Szczepkowski
  • W. Jastrzebski

2017

Journal of Quantitative Spectroscopy and Radiative Transfer 202, 328-334

The coupled system of (5)1Σ+u and (5)1Πu electronic states in Rb2

  • I. Havalyova
  • A. Pashov
  • P. Kowalczyk
  • J. Szczepkowski
  • W. Jastrzebski

2016

Review of Scientific Instruments 87, 033113

Transparent electrodes for high E-field production using a buried indium tin oxide layer

2016

Review of Scientific Instruments 87, 043111

An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li

  • W. Bowden
  • W. Gunton
  • M. Semczuk
  • K. Dare
  • K. W. Madison

2016

Chem. Phys. Lett. 666, 19-21

Investigation of highly excited electronic 1Pi states in KLi molecule

2015

J. of Chemical Physics 142, 234308

Direct coupled-channels deperturbation analysis of the A1Σ+ ∼ b3Π complex in LiCs with experimental accuracy

  • P. Kowalczyk
  • W. Jastrzebski
  • J. Szczepkowski
  • E. A. Pazyuk
  • A.V. Stolyarov

2015

Proc. of SPIE 5849, 182-185

The 41Σ+ ustate in Na2

2015

J. of Molecular Spectroscopy 314, 63-72

New observations and analyses of highly excited bands of the fourth-positive (A1P-X1S+) band system in 12C16O

2014

Chem. Phys. Lett. 614, 36-40

Experimental investigation of the 61Σ+ ‘shelf’ state of KCs

2014

J. Quant. Spectrosc. Rad. Transfer 145, 147-152

Study of the A1S+ and b3P0 states in LiCs by polarization labelling spectroscopy technique

2013

Chemical Physics Lett. 586, 16-20

Polarisation labelling spectroscopy of the D1Π state in NaLi molecule

  • N. Bang
  • D. Khoa
  • N. Dung
  • J. Szczepkowski
  • W. Jastrzebski
  • P. Kowalczyk
  • A. Pashov

2013

Chem.Phys. Letters 576, 10-14

Study of the 41Π state in KCs molecule by polarisation labelling spectroscopy

2013

European Physical Journal - Special Topics 222. 2329-2333

The 41Σ+ electronic state of LiCs molecule

  • J. Szczepkowski
  • P. Jasik
  • A. Grochola
  • W. Jastrzebski
  • J. Sienkiewicz
  • P. Kowalczyk

2013

Chem.Phys.Lett. 586, 16-20

Polarization labelling spectroscopy of the D(singlet)Pi state in NaLi molecule

  • N. Bang
  • D. Khoa
  • N. Dung
  • J. Szczepkowski
  • W. Jastrzebski
  • P. Kowalczyk
  • A. Pashov

2012

J.of Molecular Spectroscopy 276, 19-21

On the 41Σ+ state of the KCs molecule

2012

Chemical Physics Letters 535, 17-20

The A1Σ+ electronic state of KLi molecule

2011

J. of Chemical Physics 135, 044318-044323

Experimental investigation of electronic states of LiCs dissociation to Li(22s) and Cs(52D) atoms

2011

Phys. Review A 84, 012507-012512

Spin-forbidden c 3+( = 1) ← X 1+ transition in NaCs: Investigation of the = 1 state in hot and cold environments

  • A. Grochola
  • P. Kowalczyk
  • J. Szczepkowski
  • W. Jastrzebski
  • A. Wakim
  • P. Zabawa
  • N. Bigelow

2010

Chemical Physics Letters 497, 22-25

Investigation of the B1Π state in NaCs by polarisation labelling spectroscopy

2010

Journal of Physics B 43, 155102-155106

Rydberg states of Li2 molecule studied by polarization labelling spectroscopy

2010

Chemical Physics Letters 499, 36-39

The 41Σ+ electronic state of KLi molecule

2010

Optica Applicata 40, 577-585

Analysis of the mutually perturbed (31∏u, 41∏u) ← X1∑g+ band system in Li2

  • Z. Jędrzejewski-Szmek
  • A. Grochola
  • W. Jastrzebski
  • P. Kowalczyk

2009

Spectrochim. Acta A 73, 117-120

The potential energy barrier of the  21P  state in KLi

2009

J.Chem.Phys. 130, 124307

Polarization labeling spectroscopy of highly excited Π1Π1 and Σ1+Σ1+ states in NaLi

2009

Phys.Rev. A 79, 042716

Coupled system a Σ3+ and X Σ1+ of KLi: Feshbach resonances and corrections to the Born-Oppenheimer approximation

  • E. Tiemann
  • H. Knockel
  • P. Kowalczyk
  • W. Jastrzebski
  • A. Pashov
  • H. Salami
  • A. Ross

2009

Chem.Phys. 362, 130-134

Theoretical study of highly excited 1Σ+ and 1Π states of NaLi and experimental observation of the interacting 51Σ+ and 61Σ

  • I. D. Petsalakis
  • G. Theodorakopoulos
  • A. Grochola
  • P. Kowalczyk
  • W. Jastrzębski

2008

J. Mol. Spectrosc. 250, 27-32

Investigation of the D 1Π state of NaK by polarisation labelling spectroscopy

  • A. Adohi-Krou
  • W. Jastrzebski
  • P. Kowalczyk
  • A. V. Stolyanov
  • A. Ross

2008

Mol.Phys. 106, 1375-1378

Spectroscopic study of the 61Πu state in Li2

2007

Chem. Phys. Lett. 458, 64-66

Experimental investigation of the 61Π and 71Π electronic states of KLi

  • Z. Jędrzejewski-Szmek
  • D. Łubiński
  • P. Kowalczyk
  • W. Jastrzebski

2007

Chem.Phys. 333, 214-218

The C1Πu and [image] states in Li2: Experiment and comparison with theory

2007

Chem.Phys.Lett. 444, 229-231

The 51Πu electronic state of the lithium dimer

  • Z. Jędrzejewski-Szmek
  • A. Grochola
  • W. Jastrzebski
  • P. Kowalczyk

2007

J.Chem.Phys. 126, 194313

A full analytic potential energy curve for the aΣ+3aΣ+3 state of KLi from a limited vibrational data set

  • H. Salami
  • A. Ross
  • P. Crozet
  • W. Jastrzebki
  • P. Kowalczyk
  • R. Le Roy

2007

Chemical Physics Letters 440, 199-202

First observation of the 31Π and 41Π states of NaLi molecule

2006

Optica Appl. 36, 499-504

Investigation of a highly excited electronic 1Π state of NaLi molecule

  • N. H. Bang
  • A. Grochola
  • W. Jastrzebski
  • P. Kowalczyk
  • H. Salami

2006

Optica Appl. 36, 469-473

The 61Πu state of Na2 molecule

2006

J.Chem.Phys. 124, 2043088

Experimental long range potential of the BΠ1BΠ1 state in NaRb

2006

Chem.Phys.Lett. 430, 247-250

On the 61Πu state of Na2

2006

Optica Appl. 36, 511-522

Exotic states of diatomic molecules and methods of their description

2005

Opt. Commun. 246, 569

Quality improvement for high resolution in vivo images by Spectral Optical Coherence Tomography with supercontinuum source

2005

Chem.Phys. Lett. 404, 323-326

Experimental characterisation of the double minimum 61Σ+ state in NaRb

2005

Eur.Phys.J. D36, 57-65

Accurate characterisation of the C(3)1Σ+ state of the NaRb molecule

  • W. Jastrzebski
  • P. Kortyka
  • P. Kowalczyk
  • O. Docenko
  • M. Tamanis
  • R. Ferber
  • A. Pashov
  • H. Knockel
  • E. Tiemann

2005

J.Mol.Spectrosc. 233, 290-292

New observation and analysis of the E(4)1Σ+ state in NaLi

2004

J.Mol.Spectrosc. 224, 151-156

Experimental and theoretical investigation of the 61Σ+u and 71Πu states of K2

  • A. Grochola
  • W. Jastrzębski
  • P. Kowalczyk
  • S. Magnier
  • M. Aubert-Frecon

2004

J.Mol.Spectrosc. 226, 95-102

On the C1Σ+ state of NaK

  • A. Ross
  • P. Crozet
  • I. Russier-Antoine
  • A. Grochola
  • P. Kowalczyk

2004

Chem.Phys.Lett. 394, 383-386

The 31Πu state in Na2

2004

J.Chem.Phys. 121, 5754-5760

A regularized inverted perturbation approach method: Potential energy curve of the 4 1Σ+u4 1Σu+ state in Na2

2004

Mol.Phys. 102, 1739-1742

Polarization labelling spectroscopy of the 41Π state of KLi

2003

Chem.Phys.Lett. 374, 297-301

Potential curve of the 41Σ+ state of NaK by polarisation labelling spectroscopy

2003

J.Mol.Spectrosc. 221, 279-284

Experimental study of the and states of NaK by polarization labeling spectroscopy technique

2003

Phys.Chem.Chem.Phys. 3, 3443-3452

The Cu*(2D5/2 and 2D3/2) chemiluminescent reactions with ClF

2003

J.Mol. Spectrosc. 220, 162-169

The E(4) 1Πu state in K2 and its perturbations

2003

Chem.Phys.Lett. 372, 173-178

The molecular constants and potential energy curve of the D1Π state in KLi

  • A. Grochola
  • W. Jastrzębski
  • P. Kowalczyk
  • A. Ross
  • P. Crozet

2002

Spectrochim. Acta A 58, 2193-2197

Spectroscopic study of the E(4)1Σ+ state in NaLi

2002

Che.Phys.Lett.353, 414-417

On the 51Σ+ state of NaK

2002

Acta Phys. Pol. 102, 729-738

The C1Σ+ State of KLi Studied by Polarisation Labelling Spectroscopy Technique

  • A. Grochola
  • P. Kowalczyk
  • W. Jastrzębski
  • A. Ross
  • P. Crozet

2001

J.Chem. Phys. 114, 10725-10727

The ES1S+g state of lithium dimer revised

2001

J.Chem.Phys. 115, 4118-4124

On the X 1∑+X 1∑+ state of KLi

  • F. Martin
  • P. Crozet
  • A. Ross
  • M. Aubert-Frecon
  • P. Kowalczyk
  • W. Jastrzębski

2001

J.Mol.Spectrosc. 209, 50-56

The Perturbation of the B1Π and C1Σ+ States in KLi

2001

Proc. SPIE 4397, 251-255

Determination of accurate potential energy curves for diatomic molecules

2000

J.Chem. Phys. 112, 5740-5750

The c 3Σ+,c 3Σ+, b 3Π,b 3Π, and a 3Σ+a 3Σ+ states of NaK revisited

  • R. Ferber
  • E.A. Pazyuk
  • A. Zaitsevskii
  • P. Kowalczyk
  • H. Chem
  • H. Wang
  • W.C. Stwalley

2000

Phys.Rev.A 62, 042509

Spectroscopic investigation of the double-minimum 21Σ+ustate of the potassium dimer

  • W. Jastrzębski
  • W. Jaśniecki
  • P. Kowalczyk
  • R. Nadyak
  • A. Pashov

2000

J.Mol.Spectrosc. 203, 264-267

Accurate Potential Curve for the Double Minimum 21 Su1 State of Na2

  • A. Pashov
  • W. Jastrzebski
  • W. Jaśniecki
  • V. Bednarska
  • P. Kowalczyk

2000

J.Chem.Phys. 113, 6227-6234

Doppler-free UV-visible optical–optical double resonance polarization spectroscopy of the 2 1Σ+u2 1Σu+ double minimum state and the C 1ΠuC 1Πu state of Li2

2000

J.Chem.Phys. 113, 6624-6628

The Li2Li2 F 1Σ+gF 1Σg+ “shelf” state: Accurate potential energy curve based on the inverted perturbation approach

2000

J.Phys.B 33, L611-614

An improved description of the double minimum 6 [$^1\Sigma^+$] state of NaK by an IPA potential energy curve

2000

Spectrochimica Acta A57, 1829-1831

The C(2)1Πu state of Na2 molecule studied by polarization labelling spectroscopy method

  • W. Jastrzebski
  • P. Kowalczyk
  • J.J. Camacho
  • A. Pardo
  • J.M.L. Poyato

2000

Comput.Phys. Commun. 128, 622-634

Construction of potential curves for diatomic molecular states by the IPA method